Science on Sunday: Glycemic Index

One of the problems with science is how it is reported in magazines and newspapers.  Also how it is reported on the web can be a problem.  This problem came to light for me when I was reading the free magazine “Better Nutrition”.  In the February issue there was a short article on “The best weight management diet” which talked about a New England Journal of Medicine article which showed that high protein-low glycemic index diets were better for maintaining weight loss.  This sound realistic and was confirmed by reading the article, but what peeked my interest was the table of glycemic index values in the Better Nutrition article because apparently sourdough bread has a lower GI (54) than white bread (100).

This did not seem possible as sourdough bread is essentially made from the same ingredients as white bread with a different starter is added instead of yeast for proofing.  There is nothing in the process of making sourdough bread that should change the carbohydrates, which are from wheat flour.

So I looked up how glycemic index was measured.  What I found was that glycemic index (GI) ranks foods by how quickly they increase blood sugar (glucose) levels.  Foods that increase blood sugar rapidly after being consumed have a high GI.  For example, honey has a GI of 85 and sucrose, table sugar, has a GI of 70. Conversely foods which are slowly digested and absorbed have a low GI.    Examples of these foods are green vegetables (GI = 15) and dark chocolate with greater than 70 % cocoa solids (GI = 22).

GI is measured by feeding measured portions of the test food containing 10 – 50 grams of carbohydrate to 10 healthy people after an overnight fast.  Blood samples are taken at 15-30 minute intervals over the next two hours and used to construct a blood sugar response curve. The area under the curve (AUC) is calculated to reflect the total rise in blood glucose levels after eating the test food.  The results for a test food is divided by the results of the standard containing the same amount of carbohydrate, either glucose or white bread are used as standards, and multiplied by 100.  The result gives a relative ranking for each tested food.  There is some concern, firstly that the standards used are different and secondly two hours after a meal is too short.  Food is known to stay in the stomach for over 4 hours, so longer term blood glucose monitoring might be better.

The glycemic index was developed at the University of Sydney (Australia) originally to aid people with diabetes control their blood sugar levels.  Low GI diets are useful for people with diabetes as it allows them to regulate their blood sugar levels and this in turn helps with insulin levels and may reduce insulin resistance for people with Type II diabetes.

So the more I read, the less likely it seemed that sourdough bread could have a lower glycemic index than white bread, which by the way, in some measurements of GI is set as the reference with a GI of 100 and in others, where glucose is the reference, white bread has a GI of 70.  Yes, not even the measurements of GI are standardized.

Interestingly it seems that the reason the high protein/low glycemic index diets work is that protein fills you up and after eating a meal that is high in protein you are more satisfied.

References

http://heartscanblog.blogspot.com/2010/02/is-glycemic-index-irrelevant.html

http://www.glycemicindex.com/

http://en.wikipedia.org/wiki/Glycemic_index

http://thefoodfarce.com/49/

http://voices.washingtonpost.com/checkup/2010/11/in_theory_losing_weight_and.html

http://articles.latimes.com/2010/nov/26/news/la-heb-diet-20101126

http://www.extension.iastate.edu/publications/n3450.pdf

Thomas Meinert Larsen, et al, Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance N Engl J Med 2010; 363:2102-2113 doi:10.1056/NEJMoa1007137

Advertisement

Sunday Science Snippet: Microcosm by Carl Zimmer

This book was great at bringing new biology, molecular biology and microbiology concepts together.  As a food scientist I know a little about each of these topics but not how the details fit together.  Now having read Microcosm I have a much better understanding of the details.  Life is very impressive and Carl makes it even more so while addressing many topical issues including evolution and biotechnology.  He manages to address these strongly but without bias so the reader is left to make up their own minds (or not) on the issues.

The section about biofilms was the most interesting as this was new science for me. A biofilm occurs when bacteria, such as E. coli, grow together in a huge mass.  This enables them to survive more demanding conditions that when freely floating single cellular organisms.

There are lots of reviews online. Probably the best place to start is Carl’s website for Microcosm, followed by various reviews (1, 2, 3, etc.) and Scienceblogs’ bookclub discussed Microcosm, which concentrated on the New Science of Life aspect of the book.

There is even a YouTube video: